

18. Find the bilinear transformation which maps $z_1 = -1$, $z_2 = 0$ and $z_3 = 1$ onto the points $w_1 = -i$, $w_2 = 1$ and $w_3 = i$.

Part C

Answer any TWO questions:

19. State and prove the necessary and sufficient condition for a function f(z) to be differentiable at a point.

 $(2 \times 20 = 40)$

20. (a) If w(t) is a piecewise continuous complex valued function defined on an interval $a \le t \le b$, then prove that $\left| \int_a^b w(t) dt \right| \le \int_a^b |w(t)| dt$.

(b) Verify the following functions are entire functions, using sufficient condition for differentiability. (i) $f(z) = sinx \ coshy + i \ cosx \ sinhy$ (ii) $f(z) = (z^2 - 2)e^{-x} \ e^{-iy}$. (8+12)

21. (a) State and prove Argument principle.

(b) Using method of contour integration evaluate $\int_0^\infty \frac{dx}{1+x^4}$

22. (a) State and prove Rouche's theorem.

(b) Determine the value of the integral $\int_C \frac{5z-2}{z(z-1)} dz$ using residue theorem where *C* is the circle |z| = 2 described counter clockwise.