LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - NOVEMBER 2023
UMT 6501 - COMPLEX ANALYSIS

Date: 30-10-2023
Time: 01:00 PM - 04:00 PM

Part A

Answer ALL questions:

1. If $f(z)=\bar{z}$, then show that f is not differentiable at $z=0$.
2. Verify Cauchy Riemann equation for the function $f(z)=\operatorname{Rez}$.
3. Prove that the limit of the function is unique, if it exists.
4. Find the singular points of the function $f(z)=\frac{z^{3}+4}{\left(z^{2}-3\right)\left(z^{2}+1\right)}$.
5. Define harmonic function.
6. Write the Maclaurin series expansion of the function $f(z)=\sin z$.
7. State maximum modulus principle.
8. Define an Essential singularity.
9. Find the residue of $\frac{z^{2}}{z^{2}+a^{2}}$ at $z=a i$.
10. Evaluate the zeros of $(z)=\frac{z^{2}+1}{1-z^{2}}$.

Part-B

Answer any FIVE questions:
11. Show the function $f(z)=\sqrt{|x y|}$ is not differentiable but satisfies the Cauchy - Riemann equations.
12. State and prove the polar form of the Cauchy - Riemann equations.
13. Find the harmonic conjugate of $u(x, y)=y^{3}-3 x^{2} y$.
14. Let C be the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ that lies in the first quadrant. Prove that $\left|\int_{C} \frac{z+4}{z^{3}-1} d z\right| \leq \frac{6 \pi}{7}$.
15. State Liouville's theorem and deduce the Fundamental theorem of algebra.
16. Expand $f(z)=\frac{-1}{(z-1)(z-2)}$ in a Laurent's series in (i) $1<|z|<2$ and (ii) $|z|>2$.
17. State and prove Cauchy residue theorem.
18. Find the bilinear transformation which maps $z_{1}=-1, z_{2}=0$ and $z_{3}=1$ onto the points $w_{1}=$ $-i, w_{2}=1$ and $w_{3}=i$.

Part C

Answer any TWO questions:
19. State and prove the necessary and sufficient condition for a function $f(z)$ to be differentiable at a point.
20. (a) If $w(t)$ is a piecewise continuous complex valued function defined on an interval $a \leq t \leq b$, then prove that $\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t$.
(b) Verify the following functions are entire functions, using sufficient condition for differentiability.
(i) $f(z)=\sin x \cosh y+i \cos x \sinh y$ (ii) $f(z)=\left(z^{2}-2\right) e^{-x} e^{-i y}$. $\quad(8+12)$
21. (a) State and prove Argument principle.
(b) Using method of contour integration evaluate $\int_{0}^{\infty} \frac{d x}{1+x^{4}}$
22. (a) State and prove Rouche's theorem.
(b) Determine the value of the integral $\int_{C} \frac{5 z-2}{z(z-1)} d z$ using residue theorem where C is the circle $|z|=2$ described counter clockwise.

